Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 398
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38572649

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a progressive and life-threatening disease characterized by pulmonary vascular remodeling, which involves aberrant proliferation and apoptosis resistance of the pulmonary arterial smooth muscle cells (PASMCs), resembling the hallmark characteristics of cancer. In cancer, the HMGB2 (high-mobility group box 2) protein promotes the pro-proliferative/antiapoptotic phenotype. However, the function of HMGB2 in PH remains uninvestigated. METHODS: Smooth muscle cell (SMC)-specific HMGB2 knockout or HMGB2-OE (HMGB2 overexpression) mice and HMGB2 silenced rats were used to establish hypoxia+Su5416 (HySu)-induced PH mouse and monocrotaline-induced PH rat models, respectively. The effects of HMGB2 and its underlying mechanisms were subsequently elucidated using RNA-sequencing and cellular and molecular biology analyses. Serum HMGB2 levels were measured in the controls and patients with pulmonary arterial (PA) hypertension. RESULTS: HMGB2 expression was markedly increased in the PAs of patients with PA hypertension and PH rodent models and was predominantly localized in PASMCs. SMC-specific HMGB2 deficiency or silencing attenuated PH development and pulmonary vascular remodeling in hypoxia+Su5416-induced mice and monocrotaline-treated rats. SMC-specific HMGB2 overexpression aggravated hypoxia+Su5416-induced PH. HMGB2 knockdown inhibited PASMC proliferation in vitro in response to PDGF-BB (platelet-derived growth factor-BB). In contrast, HMGB2 protein stimulation caused the hyperproliferation of PASMCs. In addition, HMGB2 promoted PASMC proliferation and the development of PH by RAGE (receptor for advanced glycation end products)/FAK (focal adhesion kinase)-mediated Hippo/YAP (yes-associated protein) signaling suppression. Serum HMGB2 levels were significantly increased in patients with PA hypertension, and they correlated with disease severity, predicting worse survival. CONCLUSIONS: Our findings indicate that targeting HMGB2 might be a novel therapeutic strategy for treating PH. Serum HMGB2 levels could serve as a novel biomarker for diagnosing PA hypertension and determining its prognosis.

2.
Phys Rev Lett ; 132(12): 123802, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38579232

RESUMO

Ring resonators play a crucial role in optical communication and quantum technology applications. However, these devices lack a simple and intuitive theoretical model to describe their electro-optical modulation. When the resonance frequency is rapidly modulated, the filtering and modulation within a ring resonator become physically intertwined, making it difficult to analyze the complex physical processes involved. We address this by proposing an analytical solution for electro-optic ring modulators based on the concept of a "virtual state." This approach equates a lightwave passing through a dynamic ring modulator to one excited to a virtual state by a cumulative phase and then returning to the real state after exiting the static ring. Our model simplifies the independent analysis of the intertwined physical processes, enhancing its versatility in analyzing various incident signals and modulation formats. Experimental results, including resonant and detuning modulation, align with the numerical simulation of our model. Notably, our findings indicate that the dynamic modulation of the ring resonator under detuning driving approximates phase modulation.

3.
Biomed Pharmacother ; 175: 116613, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38657502

RESUMO

Diabetic cardiomyopathy (DCM) contributes significantly to the heightened mortality rate observed among diabetic patients, with myocardial fibrosis (MF) being a pivotal element in the disease's progression. Hydrogen sulfide (H2S) has been shown to mitigate MF, but the specific underlying mechanisms have yet to be thoroughly understood. A connection has been established between the evolution of DCM and the incidence of cardiomyocyte pyroptosis. Our research offers insights into H2S protective impact and its probable mode of action against DCM, analyzed through the lens of MF. In this study, a diabetic rat model was developed using intraperitoneal injections of streptozotocin (STZ), and hyperglycemia-stimulated cardiomyocytes were employed to replicate the cellular environment of DCM. There was a marked decline in the expression of cystathionine γ-lyase (CSE), a catalyst for H2S synthesis, in both the STZ-induced diabetic rats and hyperglycemia-stimulated cardiomyocytes. Experimental results in vivo indicated that H2S ameliorates MF and enhances cardiac functionality in diabetic rats by mitigating cardiomyocyte pyroptosis. In vitro assessments highlighted the induction of cardiomyocyte pyroptosis and the subsequent decline in cell viability under hyperglycemic conditions. However, the administration of sodium hydrosulfide (NaHS) curtailed cardiomyocyte pyroptosis and augmented cell viability. In contrast, propargylglycine (PAG), a CSE inhibitor, reversed the effects rendered by NaHS administration. Additional exploration indicated that the mitigating effect of H2S on cardiomyocyte pyroptosis is modulated through the ROS/NLRP3 pathway. In essence, our findings corroborate the potential of H2S in alleviating MF in diabetic subjects. This therapeutic effect is likely attributable to the regulation of cardiomyocyte pyroptosis via the ROS/NLRP3 pathway. This discovery furnishes a prospective therapeutic target for the amelioration and management of MF associated with diabetes.

4.
Soft Matter ; 20(15): 3337-3348, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38536453

RESUMO

Soft materials made from braided or woven microscale fibers can display unique properties that can be exploited in electromagnetic, mechanical, and biomedical applications. These properties depend on the topology of the braids or weaves-that is, the order in which fibers cross one another. Current industrial braiding and weaving machines cannot easily braid or weave micrometer-scale fibers into controllable topologies; they typically apply forces that are large enough to break the fibers, and each machine can typically make only one topology. Here we use a 3D-printed device called a "capillary machine" to manipulate micrometer-scale fibers without breaking them. The operating principle is the physics of capillary forces: as the machines move vertically, they exert lateral capillary forces on floating objects, which in turn move small fibers connected to them. We present a new type of capillary machine that is based on principles of braid theory. It implements all the possible fiber-swapping operations for a set of four fibers and can therefore make any four-strand topology, including braids, twists, hierarchical twists, and weaves. We make these different topologies by changing the pattern of vertical motion of the machine. This approach is a mechanically simple, yet versatile way to make micro- and nano-textiles. We describe the prospects and limitations of this new type of machine for applications.

5.
Signal Transduct Target Ther ; 9(1): 53, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433280

RESUMO

NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-ß, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.


Assuntos
NF-kappa B , Fosfatidilinositol 3-Quinases , Humanos , Imunoterapia , NF-kappa B/genética , Transdução de Sinais/genética
6.
Cancer Med ; 13(4): e6762, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38457252

RESUMO

BACKGROUND: Chidamide is a selective histone deacetylase inhibitor approved for patients with hormone receptor (HoR)-positive and HER2-negative metastatic breast cancer (MBC). We aimed to investigate the efficacy, safety, and treatment patterns of chidamide and identify clinicopathological factors that predict the efficacy of chidamide in real-world scenarios. METHODS: Consecutive MBC patients treated with chidamide from January 2020 to August 2021 across 11 institutions were enrolled in this multicenter, retrospective study. Eligible patients were pre- and postmenopausal women who had clinically or histologically confirmed ER-positive, HER2-negative MBC, and Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1. Patients with multiple primary malignancies or missing baseline characteristics were excluded. Patients received 30 mg chidamide orally twice a week, combined with aromatase inhibitors (AIs) or non-AIs. Efficacy analyses included progression-free survival (PFS), objective response rate (ORR), and clinical benefit rate (CBR). Univariate and multivariate Cox regression analyses were performed to identify the potential efficacy predictors. RESULTS: A total of 157 patients were finally included for analysis. The median number of lines prior to chidamide was four. In the whole cohort, the median PFS was 4.2 months (95% confidence interval [CI] 3.8-4.5). The ORR was 7.5% and the CBR was 31.3%. The efficacy of chidamide was consistent in patients pretreated with CDK4/6 inhibitors and patients treated with different endocrine combinations. Multivariate analysis indicated that patients who had liver metastases (adjusted HR = 1.66, 95% CI 1.14-2.43, adjusted p = 0.008) or ≥3 prior lines of treatment (adjusted HR = 1.80, 95% CI 1.17-2.77, adjusted p = 0.008) had significantly worse PFS. The most common AEs with chidamide were thrombocytopenia, leucopenia, neutropenia, and anemia. CONCLUSION: This study provided real-world data for the use of chidamide in patients with HoR-positive and HER2-negative MBC. Our data endorsed the use of chidamide in patients pretreated with CDK4/6 inhibitors and patients treated with different endocrine combinations.


Assuntos
Aminopiridinas , Benzamidas , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Receptor ErbB-2 , Estudos Retrospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
7.
Nat Mater ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418925

RESUMO

Non-destructive processing of powders into macroscopic materials with a wealth of structural and functional possibilities has immeasurable scientific significance and application value, yet remains a challenge using conventional processing techniques. Here we developed a universal fibration method, using two-dimensional cellulose as a mediator, to process diverse powdered materials into micro-/nanofibres, which provides structural support to the particles and preserves their own specialties and architectures. It is found that the self-shrinking force drives the two-dimensional cellulose and supported particles to pucker and roll into fibres, a gentle process that prevents agglomeration and structural damage of the powder particles. We demonstrate over 120 fibre samples involving various powder guests, including elements, compounds, organics and hybrids in different morphologies, densities and particle sizes. Customized fibres with an adjustable diameter and guest content can be easily constructed into high-performance macromaterials with various geometries, creating a library of building blocks for different fields of applications. Our fibration strategy provides a universal, powerful and non-destructive pathway bridging primary particles and macroapplications.

8.
Cell Rep ; 43(2): 113742, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38324449

RESUMO

In eukaryotic genomes, rDNA generally resides as a highly repetitive and dynamic structure, making it difficult to study. Here, a synthetic rDNA array on chromosome III in budding yeast was constructed to serve as the sole source of rRNA. Utilizing the loxPsym site within each rDNA repeat and the Cre recombinase, we were able to reduce the copy number to as few as eight copies. Additionally, we constructed strains with two or three rDNA arrays and found that the presence of multiple arrays did not affect the formation of a single nucleolus. Although alteration of the position and number of rDNA arrays did impact the three-dimensional genome structure, the additional rDNA arrays had no deleterious influence on cell growth or transcriptomes. Overall, this study sheds light on the high plasticity of rDNA organization and opens up opportunities for future rDNA engineering.


Assuntos
Saccharomycetales , Saccharomycetales/genética , Ciclo Celular , Nucléolo Celular , Proliferação de Células , DNA Ribossômico/genética
9.
Aging Dis ; 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38421826

RESUMO

Diminished ovarian reserve (DOR) refers to a decrease in the number and/or quality of oocytes, leading to infertility, poor ovarian response and adverse pregnancy outcomes. Currently, the pathogenesis of DOR is largely unknown, and the efficacy of existing therapeutic methods is limited. Therefore, in-depth exploration of the mechanism underlying DOR is highly important for identifying molecular therapeutic targets for DOR. Our study showed that estrogen receptor beta (ERß) mRNA and protein expression was upregulated in granulosa cells (GCs) from patients with DOR and in the ovaries of DOR model mice. Mechanistically, elevated ERß promotes forkhead transcription factor family 3a (FOXO3a) expression, which contributes to autophagic activation in GCs. Activation of FOXO3a/autophagy signalling leads to decreased cell proliferation and increased cell apoptosis and ultimately leads to DOR. In a cyclophosphamide (Cy)-induced DOR mouse model, treatment with PHTPP, a selective ERß antagonist, rescued fertility by restoring normal sex hormone secretion, estrus cycle duration, follicle development, oocyte quality and litter size. Taken together, these findings reveal a pathological mechanism of DOR based on ERß overexpression and identify PHTPP as a potential therapeutic agent for DOR.

10.
Reprod Biol Endocrinol ; 22(1): 26, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383391

RESUMO

BACKGROUND: To evaluate the impact of embryo quality and quantity, specifically a poor quality embryo (PQE) in combination with a good quality embryo (GQE), by double embryo transfer (DET) on the live birth rate (LBR) and neonatal outcomes in patients undergoing frozen-thawed embryo transfer (FET) cycles. METHODS: A study on a cohort of women who underwent a total of 1462 frozen-thawed cleavage or blastocyst embryo transfer cycles with autologous oocytes was conducted between January 2018 and December 2021. To compare the outcomes between single embryo transfer (SET) with a GQE and DET with a GQE and a PQE, propensity score matching (PSM) was applied to control for potential confounders, and a generalized estimating equation (GEE) model was used to determine the association between the effect of an additional PQE and the outcomes. Subgroup analysis was also performed for patients stratified by female age. RESULTS: After PS matching, DET-GQE + PQE did not significantly alter the LBR (adjusted odds ratio [OR] 1.421, 95% CI 0.907-2.228) compared with SET-GQE in cleavage-stage embryo transfer but did increase the multiple birth rate (MBR, [OR] 3.917, 95% CI 1.189-12.911). However, in patients who underwent blastocyst-stage embryo transfer, adding a second PQE increased the live birth rate by 7.8% ([OR] 1.477, 95% CI 1.046-2.086) and the multiple birth rate by 19.6% ([OR] 28.355, 95% CI 3.926-204.790), and resulted in adverse neonatal outcomes. For patients who underwent cleavage-stage embryo transfer, transferring a PQE with a GQE led to a significant increase in the MBR ([OR] 4.724, 95% CI 1.121-19.913) in women under 35 years old but not in the LBR ([OR] 1.227, 95% CI 0.719-2.092). The increases in LBR and MBR for DET-GQE + PQE compared with SET-GQE in women older than 35 years were nonsignificant toward. For patients who underwent blastocyst-stage embryo transfer, DET-GQE + PQE had a greater LBR ([OR] 1.803, 95% CI 1.165-2.789), MBR ([OR] 24.185, 95% CI 3.285-178.062) and preterm birth rate (PBR, [OR] 4.092, 95% CI 1.153-14.518) than did SET-GQE in women under 35 years old, while no significant impact on the LBR ([OR] 1.053, 95% CI 0.589-1.884) or MBR (0% vs. 8.3%) was observed in women older than 35 years. CONCLUSIONS: The addition of a PQE has no significant benefit on the LBR but significantly increases the MBR in patients who underwent frozen-thawed cleavage-stage embryo transfer. However, for patients who underwent blastocyst-stage embryo transfer, DET-GQE + PQE resulted in an increase in both the LBR and MBR, which may lead to adverse neonatal outcomes. Thus, the benefits and risks of double blastocyst-stage embryo transfer should be balanced. In patients younger than 35 years, SET-GQE achieved satisfactory LBR either in cleavage-stage embryo transfer or blastocyst-stage embryo transfer, while DET-GQE + PQE resulted in a dramatically increased MBR. Considering the low LBR in women older than 35 years who underwent single cleavage-stage embryo transfer, selective single blastocyst-stage embryo transfer appears to be a more promising approach for reducing the risk of multiple live births and adverse neonatal outcomes.


Assuntos
Fertilização In Vitro , Nascimento Prematuro , Gravidez , Feminino , Humanos , Recém-Nascido , Adulto , Fertilização In Vitro/métodos , Nascimento Prematuro/etiologia , Transferência Embrionária/métodos , Gravidez Múltipla , Transferência de Embrião Único/efeitos adversos , Nascido Vivo , Taxa de Gravidez , Estudos Retrospectivos
11.
Acta Diabetol ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38383671

RESUMO

AIMS: Inflammation is central to the pathogenesis of metabolic syndrome (MetS). Leukocyte cell-derived chemotaxin 2 (LECT2) is constitutively secreted in response to inflammatory stimuli and oxidative stress contributing to tissue or systemic inflammation. We explored the relationship between LECT2 levels and MetS severity in humans and mice. METHODS: Serum LECT2 levels were measured in 210 participants with MetS and 114 without MetS (non-MetS). LECT2 expression in the liver and adipose tissue was also examined in mice fed a high-fat diet (HFD) and genetically obese (ob/ob) mice. RESULTS: Serum LECT2 levels were significantly higher in MetS participants than in non-MetS participants (7.47[3.36-17.14] vs. 3.74[2.61-5.82], P < 0.001). Particularly, serum LECT2 levels were significantly elevated in participants with hypertension, central obesity, diabetes mellitus (DM), hyperglycaemia, elevated triglyceride (TG) levels, and reduced high-density lipoprotein cholesterol (HDL-C) levels compared to those in participants without these conditions. Pearson's correlation analysis showed that serum LECT2 levels were positively associated with conventional risk factors in all patients. Moreover, LECT2 was positively associated with the number of MetS components (r = 0.355, P < 0.001), indicating that higher serum LECT2 levels reflected MetS severity. Multivariate regression analysis revealed that a one standard deviation increase in LECT2 was associated with an odds ratio of 1.52 (1.01-2.29, P = 0.044) for MetS prevalence after adjusting for age, sex, body mass index, waist circumference, smoking status, white blood cell count, fasting blood glucose, TG, total cholesterol, HDL-C, blood urea nitrogen, and alanine aminotransferase. Receiver operating characteristic curve analysis confirmed the strong predictive ability of serum LECT2 levels for MetS. The optimum serum LECT2 cut-off value was 9.05. The area under the curve was 0.73 (95% confidence interval 0.68-0.78, P < 0.001), with a sensitivity and specificity of 45.71% and 95.61%, respectively. Additionally, LECT2 expression levels were higher at baseline and dramatically enhanced in metabolic organs (e.g. the liver) and adipose tissue in HFD-induced obese mice and ob/ob mice. CONCLUSIONS: Increased LECT2 levels were significantly and independently associated with the presence and severity of MetS, indicating that LECT2 could be used as a novel biomarker and clinical predictor of MetS.

12.
Phys Chem Chem Phys ; 26(9): 7269-7275, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38193864

RESUMO

On the basis of variable-temperature single-crystal X-ray diffraction, rotational energy barrier analysis, variable-temperature/frequency dielectric response, and molecular dynamics simulations, here we report a new crystalline supramolecular rotor (CH3NH3)(18-crown-6)[CuCl3], in which the (H3C-NH3)+ ion functions as a smallest dual-wheel rotator showing bisected rotation dynamics, while the host 18-crown-6 macrocycle behaves as a stator that is not strictly stationary. This study also provides a helpful insight into the dynamics of ubiquitous -CH3/-NH3 groups confined in organic or organic-inorganic hybrid solids.

13.
Phys Chem Chem Phys ; 26(5): 3974-3980, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38221866

RESUMO

On the basis of variable-temperature single-crystal X-ray diffraction, variable-temperature/frequency dielectric analysis, variable-temperature solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations, here we present a new model of crystalline supramolecular rotor (i-PrNHMe2)[CdBr3], where a conformationally flexible near-spherical (i-PrNHMe2)+ cation functions as a rotator and a rod-like anionic coordination polymer {[CdBr3]-}∞ acts as the stator, and the adhesion of them is realized by charge-assisted hydrogen bonds.

14.
J Genet Genomics ; 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38224945

RESUMO

Endometriosis refers to as an estrogen-dependent disease. Estrogen receptor ß (ERß), the main estrogen receptor subtype which is encoded by the estrogen receptor 2 (ESR2) gene, can mediate the action of estrogen in endometriosis. Although selective estrogen receptor modulators can target the ERß, they are not specific due to the wide distribution of ERß. Recently, long noncoding RNAs have been implicated in endometriosis. Therefore, we aim to explore and validate the downstream regulatory mechanism of ERß, and to investigate the potential role of long intergenic noncoding RNA 1018 (LINC01018) as a nonhormonal treatment for endometriosis. Our study demonstrates that the expression levels of ESR2 and LINC01018 are increased in ectopic endometrial tissues and reveals a significant positive correlation between the ESR2 and LINC01018 expression. Mechanistically, ERß directly binds to an estrogen response element located in the LINC01018 promoter region and activates LINC01018 transcription. Functionally, ERß can regulate the CDC25C/CDK1/CyclinB1 pathway and promote ectopic endometrial stromal cell proliferation via LINC01018 in vitro. Consistent with these findings, the knockdown of LINC01018 inhibits endometriotic lesion proliferation in vivo. In summary, our study demonstrates that the ERß/LINC01018/CDC25C/CDK1/CyclinB1 signaling axis regulates endometriosis progression.

15.
Circ Res ; 134(1): 9-29, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38047378

RESUMO

BACKGROUND: T cells are central to the immune responses contributing to hypertension. LGMN (legumain) is highly expressed in T cells; however, its role in the pathogenesis of hypertension remains unclear. METHODS: Peripheral blood samples were collected from patients with hypertension, and cluster of differentiation (CD)4+ T cells were sorted for gene expression and Western blotting analysis. TLGMNKO (T cell-specific LGMN-knockout) mice (Lgmnf/f/CD4Cre), regulatory T cell (Treg)-specific LGMN-knockout mice (Lgmnf/f/Foxp3YFP Cre), and RR-11a (LGMN inhibitor)-treated C57BL/6 mice were infused with Ang II (angiotensin II) or deoxycorticosterone acetate/salt to establish hypertensive animal models. Flow cytometry, 4-dimensional label-free proteomics, coimmunoprecipitation, Treg suppression, and in vivo Treg depletion or adoptive transfer were used to delineate the functional importance of T-cell LGMN in hypertension development. RESULTS: LGMN mRNA expression was increased in CD4+ T cells isolated from hypertensive patients and mice, was positively correlated with both systolic and diastolic blood pressure, and was negatively correlated with serum IL (interleukin)-10 levels. TLGMNKO mice exhibited reduced Ang II-induced or deoxycorticosterone acetate/salt-induced hypertension and target organ damage relative to wild-type (WT) mice. Genetic and pharmacological inhibition of LGMN blocked Ang II-induced or deoxycorticosterone acetate/salt-induced immunoinhibitory Treg reduction in the kidneys and blood. Anti-CD25 antibody depletion of Tregs abolished the protective effects against Ang II-induced hypertension in TLGMNKO mice, and LGMN deletion in Tregs prevented Ang II-induced hypertension in mice. Mechanistically, endogenous LGMN impaired Treg differentiation and function by directly interacting with and facilitating the degradation of TRAF6 (tumor necrosis factor receptor-associated factor 6) via chaperone-mediated autophagy, thereby inhibiting NF-κB (nuclear factor kappa B) activation. Adoptive transfer of LGMN-deficient Tregs reversed Ang II-induced hypertension, whereas depletion of TRAF6 in LGMN-deficient Tregs blocked the protective effects. CONCLUSIONS: LGMN deficiency in T cells prevents hypertension and its complications by promoting Treg differentiation and function. Specifically targeting LGMN in Tregs may be an innovative approach for hypertension treatment.


Assuntos
Hipertensão , Fator 6 Associado a Receptor de TNF , Animais , Humanos , Camundongos , Acetatos/efeitos adversos , Acetatos/metabolismo , Angiotensina II/toxicidade , Angiotensina II/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Desoxicorticosterona/efeitos adversos , Desoxicorticosterona/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Reguladores , Fator 6 Associado a Receptor de TNF/metabolismo
16.
Adv Mater ; 36(5): e2308286, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37971203

RESUMO

Cancer represents a serious disease with significant implications for public health, imposing substantial economic burden and negative societal consequences. Compared to conventional cancer treatments, such as surgery and chemotherapy, energy-based therapies (ET) based on athermal and thermal ablation provide distinct advantages, including minimally invasive procedures and rapid postoperative recovery. Nevertheless, due to the complex pathophysiology of many solid tumors, the therapeutic effectiveness of ET is often limited. Nanotechnology offers unique opportunities by enabling facile material designs, tunable physicochemical properties, and excellent biocompatibility, thereby further augmenting the outcomes of ET. Numerous nanomaterials have demonstrated the ability to overcome intrinsic therapeutic resistance associated with ET, leading to improved antitumor responses. This comprehensive review systematically summarizes the underlying mechanisms of ET-associated resistance (ETR) and highlights representative applications of nanoplatforms used to mitigate ETR. Overall, this review emphasizes the recent advances in the field and presents a detailed account of novel nanomaterial designs in combating ETR, along with efforts aimed at facilitating their clinical translation.


Assuntos
Hipertermia Induzida , Nanoestruturas , Neoplasias , Humanos , Nanomedicina/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanotecnologia/métodos , Nanoestruturas/uso terapêutico
17.
Cancer ; 130(6): 851-862, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37933913

RESUMO

BACKGROUND: With the largest sample size to date, the authors' objective was to investigate the incidence of primary-to-metastatic human epidermal growth factor 2 (HER2) conversion and the predictors for such conversion. Moreover, no previous studies have evaluated the prognosis of patients who have negative HER2 expression (HER2-0) versus low HER2 expression (HER2-low) when HER2 status was assessed based on all recurrent/metastatic lesions. METHODS: The authors included 1299 patients who had available HER2 status of primary breast tumors and paired recurrent/metastatic lesions at Fudan University Shanghai Cancer Center and West China Hospital. RESULTS: In total, 370 patients (28.5%) experienced primary-to-metastatic HER2 conversion. Intrapatient intermetastasis spatial heterogeneity and temporal heterogeneity of HER2 were detected. When assessing HER2 based on recurrent/metastatic tumors, patients who had HER2-0 tumors had significantly shorter overall survival than those who had HER2-low tumors in the overall population and in the estrogen receptor (ER)-negative subgroup. However, when assessing HER2 based on primary tumors, there was no difference in overall survival between patients who had HER2-0 versus HER2-low tumors. Moreover, patients who had tumors that converted from HER2-0 to HER2-low had longer overall survival than those who had consistent HER2-0 status in the ER-negative subgroup. By combining four predictors (ER status, Ki67 index, biopsy site, and disease-free interval), the authors established the first prediction tool to estimate the probability of HER2-0 tumors converting to HER2-low/positive tumors. CONCLUSIONS: Intrapatient primary-to-metastatic and intermetastatic HER2 heterogeneity were observed in this large-scale cohort study. When evaluating HER2 based on recurrent/metastatic tumors, an overall survival difference was observed between patients who had HER2-0 versus HER2-low, recurrent/metastatic breast tumors. The developed prediction tool might help clinicians screen out patients with primary HER2-0 tumors that have a high probability of HER2 status conversion and recommend them for re-biopsy, thus helping to screen out candidate patients for trastuzumab deruxtecan treatment.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Neoplasias da Mama/metabolismo , Receptor ErbB-2/metabolismo , Estudos de Coortes , China , Prognóstico , Receptores de Progesterona/metabolismo
18.
Org Lett ; 26(1): 411-415, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38147569

RESUMO

We report a strategic exploitation of trifluoromethyl thianthrenium triflate (TT-CF3+OTf-) as both electromediator and CF3 radical precursors for paired electrolysis. Enabled by this strategy, the three-component trifluoromethylheteroaromatization of alkenes and alkynes was realized. The superiority of TT-CF3+OTf- to other electrophilic CF3 reagents is attributed to the cathodic generation of thianthrene (TT) as a mediator, which shifts the heterogeneous oxidation of interest to a homogeneous one.

19.
J Fungi (Basel) ; 9(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38132758

RESUMO

Gibberella ear rot (GER) caused by Fusarium graminearum (teleomorph Gibberella zeae) is one of the most destructive diseases in maize, which severely reduces yield and contaminates several potential mycotoxins in the grain. However, few efforts had been devoted to dissecting the genetic basis of maize GER resistance. In the present study, a genome-wide association study (GWAS) was conducted in a maize association panel consisting of 303 diverse inbred lines. The phenotypes of GER severity were evaluated using kernel bioassay across multiple time points in the laboratory. Then, three models, including the fixed and random model circulating probability unification model (FarmCPU), general linear model (GLM), and mixed linear model (MLM), were conducted simultaneously in GWAS to identify single-nucleotide polymorphisms (SNPs) significantly associated with GER resistance. A total of four individual significant association SNPs with the phenotypic variation explained (PVE) ranging from 3.51 to 6.42% were obtained. Interestingly, the peak SNP (PUT-163a-71443302-3341) with the greatest PVE value, was co-localized in all models. Subsequently, 12 putative genes were captured from the peak SNP, and several of these genes were directly or indirectly involved in disease resistance. Overall, these findings contribute to understanding the complex plant-pathogen interactions in maize GER resistance. The regions and genes identified herein provide a list of candidate targets for further investigation, in addition to the kernel bioassay that can be used for evaluating and selecting elite germplasm resources with GER resistance in maize.

20.
Artigo em Inglês | MEDLINE | ID: mdl-37922304

RESUMO

CONTEXT: The urinary albumin-to-creatinine ratio (UACR) is a widely used indicator of albuminuria and has predictive value for adverse cardiovascular events. OBJECTIVE: To evaluate the correlation between the UACR and the risk of developing major adverse cardiovascular events (MACEs) and total mortality in patients with type 2 diabetes mellitus (T2DM). METHODS: This post-hoc analysis included 10,171 participants from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) study and the ACCORD Follow-up study with baseline UACR data. The natural logarithm (ln) of each UACR measurement was calculated. Univariate and multivariate Cox proportional hazard regression analyses were conducted to examine the association between the UACR and the risk of MACEs and total mortality. The additional predictive value of UACR was further evaluated. Similar methods were used to analyze the correlation between the UACR and MACEs and total mortality within the normal range. RESULTS: During a median follow-up period of 8.83 years, 1808 (17.78%) participants experienced MACEs, and there were 1934 (19.01%) total mortality. After adjusting for traditional cardiovascular risk factors, the multivariate analysis revealed a significant association between the UACR and the risk of MACEs and total mortality. The inclusion of UACR in the conventional risk model enhanced the predictive efficacy for MACEs and total mortality. CONCLUSIONS: An elevated UACR is associated with a higher risk of MACEs and total mortality in patients with T2DM, even when it falls below the normal range. The UACR improves MACE and total mortality risk prediction in patients with T2DM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...